Probabilistic Model Checking

Marta Kwiatkowska Gethin Norman Dave Parker

University of Oxford

Part 8 - PTA Case Studies

Overview

Discuss two real-world protocol examples

- modelled as probabilistic timed automata
- quantitatively analysed with PRISM
- compare experimental results (digital clocks, symbolic, sampling-based)

• IEEE 1394 FireWire root contention

- randomised leader election protocol, widely used
- confirmed a peculiarity...

IEEE 802.3 CSMA/CD

- distributed network arbitration protocol
- uses random backoff scheme, typical of Medium Access Control protocols

IEEE 1394 (FireWire) root contention

- Serial bus for networking multimedia devices
 - "hot-pluggable" add/remove devices (nodes) at any time
- Root contention protocol
 - leader election algorithm, when nodes join/leave
 - nodes send messages: "be my parent"
 - root contention: when nodes contend leadership
 - random choice: "fast"/"slow" delay before retry
- Properties of interest
 - time taken for leader election
 - effect of using biased coin
 - conjecture [Sto02]

Typical FireWire configuration

FireWire initial configuration

FireWire Root Contention Root contention

FireWire Root Contention

FireWire – PRISM model

- Based on probabilistic timed automata (PTA) model
 - by Stoelinga et al. [SV99, SS01]
 - infinite state (real-time)
 - **concurrency**: messages between nodes and wires
 - underspecification of delays (upper/lower bounds)
 - probability: coin toss
- Applied three PTA model checking approaches
 - Symbolic forwards
 - Symbolic backwards
 - Digital clocks

FireWire - PTA model of a node

-

FireWire - PTA model of the wire

福

FireWire – Properties

Minimum probability that a leader is elected by time T

- $z.Pmin_{=?} [true U elected \land z \le T]$
- vary: T, coin bias: probability of choosing "fast"

Maximum expected time to elect a leader

- add reward structure for elapsed time
- assign reward one to each location
- Rmax_{=?} [F elected]
- vary: coin bias
- only the digital clocks is applicable

FireWire – Results

- Minimum probability of electing leader by time T
 - $z.Pmin_{=?}$ [true U elected $\land z \leq T$]

FireWire – Results

- Maximum expected time to elect a leader
 - Rmax_{=?} [F elected]

FireWire – Number of states

and the

time	backwards		forwards		digital clocks		
bound	states	size	states	size	states	size	
		(KB)		(KB)		(KB)	
2	1,219	7.24	825	18.9	80,980	554	
4	4,844	30.6	2,329	35.2	434,364	730	
6	10,981	55.0	3,833	51.9	1,093,658	860	
8	-	I	6,841	74.1	1,915,291	875	
10	-	-	9,661	90.1	2,746,691	875	
20	-		35,041	204	6,903,691	890	

FireWire – Computation time

COL

time	backwards	forwards		digital clocks		
bound	construct.	m/c	construct.	m/c	construct.	m/c
2	544+33.0	0.10	0.4+0.6	0.38	10.2	7.8
4	26,992+753	0.34	0.9+2.0	0.80	38.3	43
6	618,493+4,388	1.3	1.6+3.7	1.4	85.8	145
8	_	_	2.9+10	1.6	145	228
10	_	_	4.2+20	2.5	205	335
20	_	_	18+226	5.1	549	469

Experimental results: CSMA/CD

- IEEE 802.3 CSMA/CD (Carrier Sense, Multiple Access with Collision Detection)
 - model of [NSY92], without probabilities
 - when a station has data to send, it listens to the medium
 - if the medium was free (no one transmitting), the station starts to send its data
 - if the medium was sensed busy, the station waits a random amount of time and then repeats this process
- Exponential backoff scheme
 - wait for a random delay between $0, ..., 2^{k-1}$
 - where k counts number of collisions up to a bound K

CSMA/CD - PTA model of a station

CSMA/CD - PTA model of the medium

R. F.

18

- Probability n collisions before a packet is sent (K=5)
 - $P_{=?}$ [true U (collisions $\ge n \land$ unsent)]

- Probability n collisions before a packet is sent (K=10)
 - $P_{=?}$ [true U (collisions $\ge n \land$ unsent)]

Probability packet is sent before time T (K=5)

- z.P_{=?} [true U (z \leq T \land sent)]

• Probability packet is sent before time T (K=10)

- z.P_{=?} [true U (z \leq T \land sent)]

Expected number of collisions before a packet is sent
 - R_{=?} [F sent]

- Expected time until a packet is sent
 - $R_{=?}$ [F sent]

8

Summing up...

- What have we achieved?
- Probabilistic timed automata
 - appropriate model for distributed coordination protocols that use randomisation
- Developed a methodology for quantitative analysis and verification
 - theory of probabilistic model checking: symbolic, digital clocks, sampling-based
 - resource usage and expectations
 - implementation of the techniques and experimental results

Further information

- More on FireWire root contention
 - see [KNS03b,KNPS06,KNSW07]
- More on CSMA/CD
 - see [DKN+06]
- More on similar protocols
 - 802.11 WiFi [KNS03b]
 - IPv4 Zeroconf [KNS03b]
 - 802.15.4 Zigbee [Fru06]
- More information, see the PRISM web page
 www.prismmodelchecker.org